<!DOCTYPE HTML PUBLIC "-//W3O/DTD HTML//EN">
Microsoft Windows Scripting Host

PROGRAMMER'S REFERENCE

ABSTRACT
The following information is presented in this programmer's reference:

· About Microsoft® Windows® operating system Scripting Host
· Using Windows Scripting Host
· Windows Scripting Host Object Reference
CONTENTS

· INTRODUCTION

· ACTIVEX SCRIPTING HOSTS

· OVERVIEW OF THE WINDOWS SCRIPTING HOST OBJECT MODEL

· USING WINDOWS SCRIPTING HOST

· Writing a Scripting Engine for Windows Scripting Host
· How Windows Scripting Host Uses the Registry
· Registering a Scripting Engine for Windows Scripting Host
· Running Scripts Using Wscript.Exe
· Creating .WSH Files to Record Script Options
· Using .WSH Files to Run Scripts
· Running Scripts Using Cscript.exe
· A Cscript Example
· Document Conventions
· WINDOWS SCRIPTING HOST OBJECT REFERENCE

· Objects provided by Wscript.exe
· Objects provided by WSHom.Ocx
· Wscript Object
· Wscript.Application
· Wscript.Arguments
· Wscript.FullName
· Wscript.Name
· Wscript.Path
· Wscript.ScriptFullName
· Wscript.ScriptName
· Wscript.Version
· Wscript.CreateObject
· Wscript.DisconnectObject
· Wscript.Echo
· Wscript.GetObject
· Wscript.Quit
· WshArguments Object
· WshArguments.Item
· WshArguments.Count
· WshArguments.length
· WshShell Object
· WshShell.Environment
· WshShell.SpecialFolders
· WshShell.CreateShortcut
· WshShell.ExpandEnvironmentStrings
· WshShell.Popup
· WshShell.RegDelete
· WshShell.RegRead
· WshShell.RegWrite
· WshShell.Run
· WshNetwork Object
· WshNetwork.ComputerName
· WshNetwork.UserDomain
· WshNetwork.UserName
· WshNetwork.AddPrinterConnection
· WshNetwork.EnumNetworkDrives
· WshNetwork.EnumPrinterConnections
· WshNetwork.MapNetworkDrive
· WshNetwork.RemoveNetworkDrive
· WshNetwork.RemovePrinterConnection
· WshNetwork.SetDefaultPrinter
· WshCollection Object
· WshCollection.Item
· WshCollection.Count
· WshCollection.length
· WshEnvironment Object
· WshEnvironment.Item
· WshEnvironment.Count
· WshEnvironment.length
· WshEnvironment.Remove
· WshShortcut Object
· WshShortcut.Arguments
· WshShortcut.Description
· WshShortcut.FullName
· WshShortcut.Hotkey
· WshShortcut.IconLocation
· WshShortcut.TargetPath
· WshShortcut.WindowStyle
· WshShortcut.WorkingDirectory
· WshShortcut.Save
· WshSpecialFolders Object
· WshSpecialFolders.Item
· WshSpecialFolders.Count
· WshSpecialFolders.length
· WshUrlShortcut Object
· WshUrlShortcut.FullName
· WshUrlShortcut.TargetPath
· WshUrlShortcut.Save
· FOR MORE INFORMATION

INTRODUCTION

The Microsoft® Windows® operating system Scripting Host is a language-independent scripting host for ActiveX™ scripting engines on 32-bit Windows platforms. Windows Scripting Host will be integrated into Windows 98, Windows NT® Workstation operating system version 5.0, and Windows NT Server version 5.0.

Both Microsoft Visual Basic® development system Scripting Edition (VBScript) and Microsoft JScript™ development system scripting engines are provided with Windows Scripting Host. Other software companies will provide ActiveX scripting engines for languages such as Perl, TCL, REXX, Python, and others. Windows Scripting Host can be run from either the Windows-based host (Wscript.exe), or the command-shell-based host (Cscript.exe).

ACTIVEX SCRIPTING HOSTS

ActiveX scripting architecture supports powerful scripting, using languages such as Visual Basic Scripting Edition, JScript, Perl, and others. Microsoft currently provides three hosts for running these scripting languages across the Windows platform:

· Microsoft Internet Explorer. Internet Explorer can execute scripts on client computers from within HTML pages.
· Internet Information Server (IIS). IIS supports Active Server Pages, so scripts can run on Web servers. In other words, IIS supports server-side scripting over the Internet or an intranet.
· Windows Scripting Host. Windows Scripting Host provides a low-memory scripting host so scripts can execute directly on the Windows desktop or Command Prompt window; the scripts do not need to be embedded in an HTML document. Windows Scripting Host is an ideal host for noninteractive scripts that perform logon and administrative tasks.
In addition to having a smaller footprint than the other two scripting hosts, the Windows Scripting Host does not rely on an HTML SCRIPT tag or LANGUAGE attribute to identify a script engine. Instead, it uses the extension of the script file to determine what script engine to use. As a result, the scriptwriter need not obtain a script engine ProgID. The scripting host itself maintains a mapping of script extensions to ProgIDs and uses the Windows association model to launch the appropriate engine for a given script.

For more information about how Windows Scripting Host works, see: http://www.microsoft.com/management/wsh.htm.

OVERVIEW OF THE WINDOWS SCRIPTING HOST OBJECT MODEL

The Windows Scripting Host object model provides two main categories of ActiveX interfaces:

1. Script execution and troubleshooting: Properties and methods that are directly related to script execution. This set of interfaces allows scripts to manipulate Windows Scripting Host, display messages on the screen, and perform basic functions such as CreateObject and GetObject.

2. Helper functions: Properties and methods that map network drives, connect to printers, retrieve and modify environment variables, and manipulate registry keys. These functions are provided so administrators can use Windows Scripting Host to create simple logon scripts.

In addition to the object interfaces provided by Windows Scripting Host, administrators can use any ActiveX controls that expose Automation interfaces to perform various tasks on the Windows platform. For example, administrators can write scripts that use the Active Directory to manage the Windows NT Directory Service.

USING WINDOWS SCRIPTING HOST

The following section describes how you can use Windows Scripting Host.

Writing a Scripting Engine for Windows Scripting Host
The principal requirement for a third-party scripting engine is that it support the ActiveX IActiveScriptParse COM interface.

The Windows Scripting Host reads and passes the contents of a specified script file to a registered script engine using the script engine's IActiveScriptParse::ParseScriptText method.

A scripting engine can also call Wshom.ocx, an ActiveX control that supports the IDispatch COM interface. If the scripting engine supports ActiveX control creation in a script, Wshom.ocx can be called from within the script.

If the scripting engine itself calls Wshom.ocx, you should obtain Iwshom.idl, Iwshom.h and Iwshom.iid from the Platform SDK. With these files, you can call methods in Wshom.ocx using the normal COM calling sequence. Wshom.ocx supports a dual interface, aggregation, and the IErrorInfo COM interface.

Example
#include <IWSHom.h>
HRESULT
Use_WSHShell() {
HRESULT hr;
IWSHShell* pShell;

hr = ::CoCreateInstance(CLSID_IWSHShell,
NULL,
CTX_INPROCSERVER,
IID_IWSHShell,
(LPVOID*) &pShell);
if (FAILED(hr)) return hr;
hr = pShell-Run(bstrCommand,
&varWindowStyle,
&varWaitOnReturn,
&nExitCode);
pShell-Release();
return hr;
}

How Windows Scripting Host Uses the Registry
An ActiveX scripting engine is registered for use with Windows Scripting Host by adding registry entries under the HKEY_CURRENT_USER (HKCU) key. Windows Scripting Host determines which scripting engine to use to execute a script by examining the ScriptEngine key. For example, if a user types the following command in a Command Prompt window:

cscript chart.vbs

To look up the scripting engine for the Chart.vbs file, Windows Scripting Host:

· Searches HKCU\.vbs to obtain a script identifier, such as VBSfile.
· Searches HKCU\VBSFile\ScriptEngine to get a scripting engine identifier, such as VBScript.
· Finds the CLSID from the scripting engine identifier; in this example, the CLSID is located in HKCU\VBScript\CLSID.
· Calls CoCreateInstance with the CLSID and IUnknown.
· Calls QueryInterface to get the IActiveScriptParse COM interface.
Registering a Scripting Engine for Windows Scripting Host
If you have written an ActiveX scripting engine with the following characteristics:

· Script engine identifier is FooScript
· File extension for script is .FOO
· Script identifier is FooFile
The following table shows the registry entries that are necessary to register this engine (none of these has a value name).

PRIVATE
Key
Value Name
Type
Value

.FOO
none
REG_SZ
FooFile

FooFile
none
REG_SZ
FooScript Script File

FooFile\ScriptEngine
none
REG_SZ
FooFile

FooFile\Shell\Open
none
REG_SZ
&Open

FooFile\Shell\Open\Command
none
REG_EXPAND_SZ
%systemroot%\system32\wscript "%1" %*

FooFile\Shell\Open2
none
REG_EXPAND_SZ
Open &with command console

FooFile\Shell\Open2\Command
none
REG_SZ
%systemroot%\system32\wscript "%1" %*

FooFile\ShellEx\
PropertySheetHandlers\
WSHProps
none
REG_SZ
{60254CA5-953B-11CF-8C96-00AA00B8708C}

For Windows 98, use REG_SZ instead of REG_EXPAND_SZ and change the path of Wscript.exe and Cscript.exe as shown in the following table.

PRIVATE
Windows NT

Windows 98

Wscript
%SystemRoot%\System32\Wscript.exe
C:\Windows\Wscript.exe

Cscript
%SystemRoot%\System32\Cscript.exe
C:\Windows\Command\Cscript.exe

Running Scripts Using Wscript.Exe
Using Wscript.exe, you can run scripts under Windows in three ways:

· Double-clicking files or icons. These can be files or icons listed in My Computer, Windows Explorer, the Find window, the Start menu, or on the Desktop.
· Entering a script name at the Run command on the Start Menu. Press the Start button, select Run, and enter the full name of the script you want to run, including file extension and any necessary path information.
· Entering Wscript.exe followed by a script name at the Run command. Press the Start button, select Run, and enter Wscript, followed by the full name and path of the script you want to run.
If you double-click a script file whose extension has not yet been associated with Wscript.exe, an Open With dialog box appears asking your what program you would like to use to open the file you double-clicked. After choosing Wscript, if you check the Always use this program to open this file check box, Wscript is registered as the default application for all files having the same extension as the one you double-clicked. For example, if you check this check box when you run Chart.vbs, Wscript.exe becomes the default application for all files having the .vbs extension.

Wscript.exe has a properties page associated with it that provides the following options:

PRIVATE
Property
Function
CSCRIPT equivalent

Stop script after nn seconds.
Specifies a maximum number of seconds that a script can run (the default is no limit).
//T:nn

Display logo when scripts executed in a command console.
Display a banner before running the script (this is the default the opposite is //nologo).
//logo or
//nologo

By using the Wscript.exe Properties page, you can set global scripting options for all scripts that Wscript runs on the local machine. It is also possible to set options for individual scripts, using a .wsh file, as described in the next section.

Creating .WSH Files to Record Script Options
You can record specific settings for each individual script you run by creating a control file for that script with a .wsh file extension.

A .wsh file is a text file that uses a format similar to that of .ini files. It is created automatically when you set the properties for a supported script file.

To create a .wsh file for a given script

1. Right-click the given script file in Windows Explorer.

2. Select Properties on the context menu that appears.

3. Choose the settings you want for the script on the property page.

4. Choose OK or Apply.

A .wsh file is automatically created using the same name as the script file that you right-clicked. A sample .wsh file might contain the following text:

[ScriptFile]
Path=C:\WINNT\Samples\WSH\showprop.vbs

[Options]
Timeout=0
DisplayLogo=1
BatchMode=0

The Path setting in the [ScriptFile] section identifies the script file that this .wsh file is associated with. The keys in the [Options] section correspond to settings in the Script tab within the Properties dialog box.

Using .WSH Files to Run Scripts
A .wsh file is analagous to the .pif files used to run older 16-bit applications. It can be treated as if it were an executable or batch file.

For example, suppose you have a script named Myscript.vbs for which you have created a .wsh file named Myscript.wsh. To run Myscript.vbs with the options recorded in Myscript.wsh, you can either double-click Myscript.wsh in Windows Explorer, or pass Myscript.wsh as a script argument to CScript.exe or WScript.exe. For example, you could enter the following command at the command prompt:

cscript Myscript.wsh

Administrators in particular will find .wsh files useful. By creating multiple .wsh files for a given script, an administrator can tailor the way that script runs to the needs of specific groups or even individuals within an organization.

The same logon script, for example, might serve two very different groups if invoked by two different .wsh files containing different settings and parameters.

Running Scripts Using Cscript.exe
To use Cscript.exe, open a Command Prompt window and type a Cscript command line. CScript uses the following syntax:

cscript [script name] [host options...] [script options]

· Script name is the name of the script file, complete with extension and any necessary path information, such as: d:\admin\vbscripts\chart.vbs.
· Host options enable or disable various Windows Scripting Host features. Host options are always preceeded by two slashes (//).
· Script options are passed to the script. Script parameters are always preceeded by only one slash (/).
Each parameter is optional; however, you cannot specify script options without specifying a script name. If you do not specify parameters, Cscript displays the Cscript syntax and the valid host parameters.

Cscript.exe supports the host parameters shown in the following table.\

PRIVATE
Parameter
Description

//I
Interactive Mode: allows display of user prompts and script errors (this is the default, and the opposite of //B).

//B
Batch Mode: suppresses command-line display of user prompts and script errors.

//T:nn
Enables time-out: the maximum number of seconds the script can run. The default is no limit. (See the text following this table for more information on this parameter.)

//logo
Displays a banner (default; opposite of //nologo).

//nologo
Prevents display of an execution banner at run time.

//H:Cscript or
//H:Wscript
Registers Cscript.exe or Wscript.exe as the default application for running scripts. If neither is specified, Wscript.exe is assumed as the default.

//S
Saves the current command-line options for this user.

//?
Shows command usage (same as with parameters).

The //T parameter prevents excessive execution of scripts; it does this by setting a timer. When execution time exceeds the specified value, Cscript interrupts the scripting engine using the IActiveScript::InterruptThread method and terminates the process.

A Cscript Example
Several sample scripts are installed when you install the final release of the Windows Scripting Host. These are also available for download at: http://www.microsoft.com/management/wsh.htm

Suppose, for the purposes of this example, that you have copied the Chart.vbs sample script to the following folder on your computer:

c:\sample scripts\chart.vbs

You can run the script using with and without a logo, as follows:

1. Choose the MS-DOS® operating system Command Prompt from Programs on the Start menu.

2. Enter the following commands at the command prompt (if your sample scripts are located in a different folder, these lines should be modified accordingly):

cscript //logo c:\"sample scripts"\chart.vbs
cscript //nologo c:\"sample scripts"\chart.vbs

When Windows Scripting Host ships with Windows NT 5.0, you will no longer need to provide the script file's extension. Instead, you can type the script name alone, or double-click the script in Windows Explorer.

Document Conventions
Variable prefixes in parameter listings and code examples have the following meanings.

PRIVATE
Prefix
Description

any
Any type

b
Boolean

int
Integer

nat
Natural number or nonnegative integer

obj
Object (Idispatch interface)

str
String

Scripting examples are written in the Microsoft Visual Basic Scripting Edition (VBScript).

Methods written in Microsoft Jscript are case-sensitive. In general, you should use the same case as the syntax examples shown in this document.

Parameters in brackets (for example, [anyValue]) are optional.

WINDOWS SCRIPTING HOST OBJECT REFERENCE

Objects provided by Wscript.exe

PRIVATE
Wscript
Exposed to scripting engine as "Wscript."

WshArguments
Not exposed; accessed through the Wscript.Arguments property.

Objects provided by WSHom.Ocx

PRIVATE
WshShell
Automation object,
ProgID "Wscript.WshShell."

WshNetwork
Automation object, ProgID "Wscript.WshNetwork."

WshShortcut
Not exposed; accessed through WshShell.CreateShortcut method.

WshUrlShortcut
Not exposed; accessed through WshShell.CreateShortcut method.

WshCollection
Not exposed; accessed through
WshNetwork.EnumNetworkDrives or
WshNetwork.EnumPrinterConnection.

WshEnvironment
Not exposed; accessed through WshShell.Environment property.

WshSpecialFolders
Not exposed; accessed through WshShell.Folder property.

Wscript Object

PRIVATE
ProgID
N/A

Filename
Wscript.exe or Cscript.exe

CLSID
60254CA2-953b-11CF-8C96-00AA00B8708C

IID
60254CA1-953b-11CF-8C96-00AA00B8708C

The following table describes the properties associated with the Wscript object.

PRIVATE
Property
Description

Application
The IDispatch interface for Wscript.

Arguments
A parameters collection object.

FullName
Full path to the host executable.

Name
Friendly name of Wscript (the default property).

Path
Name of the directory where Wscript.exe or Cscript.exe resides.

ScriptFullName
Full path to the script being run by the Windows Scripting Host.

ScriptName
File name of the script being run by the Windows Scripting Host.

Version
A version string for the Windows Scripting Host.

The following table describes the methods associated with the Wscript object.

PRIVATE
Method
Description

CreateObject
Creates an object and establishes its event handling.

DisconnectObject
Disconnects a previously connected object from Windows Scripting Host.

Echo
Displays parameters in a window or at a command prompt in a Command Prompt window.

GetObject
Retrieves an Automation object from a file.

Quit
Quits execution with a specified error code.

Wscript.Application
The Application property provides the IDispatch interface on the Wscript object.

Syntax

Wscript.Application = objWscript

Wscript.Arguments
The Arguments property provides a WshArguments collection object.

Syntax

Wscript.Arguments = objArguments

Example

' Display all command-line parameters
Set objArgs = Wscript.Arguments
For I = 0 to objArgs.Count - 1
Wscript.Echo objArgs(I)
Next

Wscript.FullName
The FullName property provides a string containing the full path to the host executable.

Syntax

Wscript.FullName = strFullName

Example

Wscript.FullName = C:\WinNT\System32\wscript.exe

See Also

Wscript.Path property.

Wscript.Name
The Name property provides a string containing the friendly name of the Wscript object. This is the default property.

Syntax

Wscript.Name = strName

Example

Wscript.Name = Windows Scripting Host
Wscript = Windows Scripting Host

Wscript.Path
The Wscript.Path property provides a string containing the name of the directory where Wscript.Exe or Cscript.Exe resides.

Syntax

Wscript.Path = strPath

Example

Wscript.Path = C:\WinNT\System32

See Also

Wscript.FullName property

Wscript.ScriptFullName
The ScriptFullName property provides the full path to the script being run by the Windows Scripting Host.

Syntax

Wscript.ScriptFullName = strScriptFullName

Example

Wscript.ScriptFullName = C:\Users\Default\WSH\Sample.VBS

See Also

Wscript.ScriptName property

Wscript.ScriptName
The ScriptName property provides the file name of the script being run by the Windows Scripting Host.

Syntax

Wscript.ScriptName = strScriptName

Example

Wscript.ScriptName = Sample.VBS

See Also

Wscript.ScriptFullName property

Wscript.Version
The Version property provides a version string for the Windows Scripting Host.

Syntax

Wscript.Version = strVersion

Example

Wscript.Version = 5.0

Wscript.CreateObject
The CreateObject method creates an object specified by the strProgID parameter. If the parameter strPrefix is specified, Windows Scripting Host connects the object's outgoing interface to the script file after creating the object. When the object fires an event, Windows Scripting Host calls a subroutine named strPrefix and the event name.

For example, if strPrefix is "MYOBJ_" and the object fires an event named "OnBegin," Windows Scripting Host calls the "MYOBJ_OnBegin" subroutine located in the script.

Syntax

Wscript.CreateObject(strProgID, [strPrefix]) = objObject

See Also

Wscript.GetObject method, Wscript.DisconnectObject method

Wscript.DisconnectObject
The DisconnectObject method disconnects a previously connected object (obj) from Windows Scripting Host. If the specified object is not already connected to Windows Scripting Host, this method does nothing.

Syntax

Wscript.DisconnectObject obj

Example

' This code fragment instantiates a fictitious object and
' connects it to the script file. The script then calls the
' "SomeMethod" method on the object.
' If an error called "Event" occurs in the object, then the
' MyEvent_Event subroutine is called.
Set MyObject = Wscript.CreateObject("SomeObject", "MyEvent")
MyObject.SomeMethod
Sub MyEvent_Event(strName)
Wscript.Echo strName
End Sub
' When done with the object, disconnect it from the script
' and then set it to Nothing
Wscript.DisconnectObject MyObject
Set MyObject = Nothing

See Also

Wscript.CreateObject method, Wscript.GetObject method

Wscript.Echo
The Echo method displays parameters in a window (in Wscript.exe) or at the command prompt in a Command Prompt window (in Cscript.exe).

Parameters are delimited by one space. Under Cscript.exe, this method outputs a carriage-return/line feed pair (CR LF) after the last parameter displayed.

Syntax

Wscript.Echo [anyArg...]

Example

Wscript.Echo
Wscript.Echo 1, 2, 3
Wscript.Echo "Windows Scripting Host is cool."

Wscript.GetObject
The GetObject method retrieves an Automation object from a file, or an object specified by strProgID parameter. Use the GetObject method when there is a current instance of the object, or if you want to create the object from a file that is already loaded. If there is no current instance and you don't want the object started from a file that is already loaded, use the CreateObject method.

Syntax

Wscript.GetObject(strPathname [,strProgID]], [strPrefix]) = objObject

Parameters strPathname

The full path and the name of the file containing the object to retrieve. The parameter strPathname is required.

strProgID

A string representing the program identifier (ProgID) of the object.

strPrefix

If the parameter strPrefix is specified, Windows Scripting Host connects the object's outgoing interface to the script file after creating the object. When the object fires an event, Windows Scripting Host calls a subroutine named strPrefix and the event name.

For example, if strPrefix is "MYOBJ_" and the object fires an event named "OnBegin," Windows Scripting Host calls the "MYOBJ_OnBegin" subroutine located in the script.

Return

objObject

The Automation object retrieved.

Remarks
If an object has registered itself as a single-instance object (for example, the Word.Basic object in Microsoft Word 7.0), only one instance of the object is created, no matter how many times CreateObject is executed. In addition, with a single-instance object, GetObject always returns the same instance when called with the zero-length string syntax (""), and it causes an error if the path parameter is omitted. You can't use GetObject to obtain a reference to a Visual Basic class created with Visual Basic 4.0 or earlier.

GetObject works with all COM classes, independent of the language used to create the object.

Examples

Dim MyObject As Object
Set MyObject = GetObject(""C:\CAD\SCHEMA.CAD"")
= MyCAD.Application

When this code is executed, the application associated with the specified strPathname is started, and the object in the specified file is activated.

If strPathname is a zero-length string (""), GetObject returns a new object instance of the specified type. If the strPathname parameter is omitted entirely, GetObject returns a currently active object of the specified type. If no object of the specified type exists, an error occurs.

Some applications allow you to activate part of a file. To do this, add an exclamation point (!) to the end of the file name and follow it with a string that identifies the part of the file you want to activate. For information on how to create this string, see the documentation for the application that created the object. For example, in a drawing application you might have multiple layers to a drawing stored in a file. You could use the following code to activate a layer within a drawing file called schema.cad:

Set LayerObject = GetObject("C:\CAD\SCHEMA.CAD!Layer3")

If you do not specify the object's class, COM determines the application to start and the object to activate according to the file name you provide. Some files, however, may support more than one class of object. For example, a drawing might support three different types of objects: an application object, a drawing object, and a toolbar object, all of which are part of the same file. To specify which object in a file you want to activate, use the optional class parameter. For example:

Dim MyObject As Object
Set MyObject = GetObject("C:\DRAWINGS\SAMPLE.DRW", "FIGMENT.DRAWING")

In the above example, FIGMENT is the name of a drawing application and DRAWING is one of the object types it supports.

Once an object is activated, you reference it in code using the object variable you defined. In the above example, you access properties and methods of the new object using the object variable MyObject. For example:

MyObject.Line 9, 90
MyObject.InsertText 9, 100, "Hello, world."
MyObject.SaveAs "C:\DRAWINGS\SAMPLE.DRW"

See Also

Wscript.CreateObject method, Wscript.DisconnectObject method

Wscript.Quit
The Quit method quits execution with a specified error code.

Syntax

Wscript.Quit [intErrorCode]

Parameters

intErrorCode

If this parameter is included, Wscript returns it as the process exit code. Otherwise, if intErrorCode is omitted, Wscript returns zero (0) as the process exit code.

Example

Wscript.Quit(1)

WshArguments Object
This object is not exposed directly; access it using the Wscript.Arguments property.

PRIVATE
ProgID
N/A

Filename
Wscript.Exe or Cscript.Exe

CLSID
60254CA4-953b-11CF-8C96-00AA00B8708C

IID
60254CA3-953b-11CF-8C96-00AA00B8708C

The following table describes the properties associated with the WshArguments object.

PRIVATE
Property
Description

Item
The nth command-line parameter (the default property).

Count
The number of command-line parameters.

length
The number of command-line parameters (JScript).

WshArguments.Item
The Item property contains the natIndexth command-line parameter as a string. It is the default property.

Syntax

Arguments(natIndex)
Arguments.Item(natIndex) = strArgument

Example Set oArgs = Wscript.Arguments.
Wscript.Echo oArgs(0)
Wscript.Echo oArgs.Item(0)

See Also

Wscript.Arguments property

WshArguments.Count The Count property provides the number of command-line parameters.

Syntax

Arguments.Count = natNumberOfArguments

See Also

Wscript.Arguments property, WshArguments.length property

WshArguments.length
The length property provides the number of command-line parameters. This property provides the same functionality as the Count property and is provided for Microsoft JScript compatibility.

Syntax

Arguments.length = natNumberOfArguments

See Also

Wscript.Arguments property, WshArguments.Count property

WshShell Object

PRIVATE
ProgID
Wscript.WshShell

Filename
WSHom.Ocx

CLSID
F935DC22-1CF0-11d0-ADB9-00C04FD58A0B

IID
F935DC21-1CF0-11d0-ADB9-00C04FD58A0B

The following table describes the properties associated with the WshShell object.

PRIVATE
Property
Description

Environment
Returns the WshEnvironment collection object.

SpecialFolders
Provides access to Windows shell folders such as the desktop folder, start menu folder, and personal document folder, using the WshSpecialFolders object.

The following table describes the methods associated with the WshShell object.

PRIVATE
Method
Description

CreateShortcut
Creates a WshShortcut object and returns it.

ExpandEnvironmentStrings
Expands a PROCESS environment variable and returns the result string.

Popup
Pops up a message box window containing a specified message.

RegDelete
Deletes, from the registry, a specified key or value.

RegRead
Returns a specified key or value from the registry.

RegWrite
Sets a specified key or value in the registry.

Run
Creates a new process that executes a specified command with a specified window style.

WshShell.Environment
The Environment property returns the WshEnvironment object.

Syntax

WshShell.Environment ([strType]) = objWshEnvironment

Remarks
If strType specifies where the environment variable resides, possible values are "System," "User," "Volatile," and "Process." If strType is not supplied, this method retrieves the system environment variables in Windows NT or the process environment variables in Windows 95. For Windows 95, only "Process" is supported in the strType parameter. The following variables are provided with the Windows operating system. Scripts can also get environment variables that were set by other applications.

PRIVATE
Name
Description

NUMBER_OF_PROCESSORS
Number of processors running on the machine

PROCESSOR_ARCHITECTURE
Processor type of the user's workstation

PROCESSOR_IDENTIFIER
Processor ID of the user's workstation

PROCESSOR_LEVEL
Processor level of the user's workstation

PROCESSOR_REVISION
Processor version of the user's workstation

OS
Operating system on the user's workstation

COMSPEC
Executable for command Command Prompt (typically cmd.exe)

HOMEDRIVE
Primary local drive (typically the C drive)

HOMEPATH
Default directory for users (on Windows NT this is typically \users\default

PATH
PATH environment variable

PATHEXT
Extensions for executable files (typically .com, .exe, .bat, or .cmd)

PROMPT
Command prompt (typically PG)

SYSTEMDRIVE
Local drive on which system directory resides (e.g., c:\)

SYSTEMROOT
System directory (e.g., c:\winnt). This is the same as WINDIR

WINDIR
System directory (e.g., c:\winnt). This is the same as SYSTEMROOT

TEMP
Directory for storing temporary files (e.g., c:\temp). User, Volatile

TMP
Directory for storing temporary files (e.g., c:\temp). User, Volatile

Example

' Retrieve the NUMBER_OF_PROCESSORS system environment variable
Set WshShell = Wscript.CreateObject("Wscript.Shell")
Set WshSysEnv = WshShell.Environment("SYSTEM")
Wscript.Echo WshSysEnv("NUMBER_OF_PROCESSORS")

See Also

WshEnvironment object

WshShell.SpecialFolders
The SpecialFolders property provides the WshSpecialFolders object for accessing Windows shell folders such as the desktop folder, start menu folder, and personal document folder.

Syntax

WshShell.SpecialFolders = objWshSpecialFolders

Example

' This code fragment shows how to access the desktop folder
Set WshShell = Wscript.CreateObject("Wscript.Shell")
MsgBox "Your desktop is " & WshShell.SpecialFolders("Desktop")

See Also

WshSpecialFolders object

WshShell.CreateShortcut
The CreateShortcut method creates a WshShortcut object and returns it. If the shortcut title ends with ".URL," a WshURLShortcut object is created.

Syntax

WshShell.CreateShortcut(strPathname) = objShortcut

Example

' This code fragment creates a shortcut
' to the currently executing script
Set WshShell = Wscript.CreateObject("Wscript.Shell")
Set oShellLink = WshShell.CreateShortcut("Current Script.lnk")
oShellLink.TargetPath = Wscript.ScriptFullName
oShellLink.Save
Set oUrlLink = WshShell.CreateShortcut("Microsoft Web Site.URL")
oUrlLink.TargetPath = "http://www.microsoft.com"
oUrlLink.Save

See Also

WshShortcut object, WshUrlShortcut object

WshShell.ExpandEnvironmentStrings
The ExpandEnvironmentStrings method expands the PROCESS environment variable in strString and returns the result string. Variables are enclosed by the "%" character.

The environment variable name is not case-sensitive.

Syntax

WshShell.ExpandEnvironmentStrings(strString) = strExpandedString

Example

MsgBox "Prompt is " & WshShell.ExpandEnviromentStrings("%PROMPT%")

WshShell.Popup
The Popup method displays a popup message box window that contains the message contained in strText. The window title of this message box is specified by strTitle. If strTitle is omitted, the window title is "Windows Scripting Host."

Syntax

WshShell.Popup(strText, [natSecondsToWait], [strTitle], [natType]) = intButton

Remarks
If natSecondsToWait is supplied and its value is greater than zero, the message box window will be closed after natSecondsToWait seconds.

The meaning of natType is the same as in the Microsoft Win32® application programming interface MessageBox function. The following table shows the value and its meaning in natType. You can combine values in the following tables.

Button Types

PRIVATE
Value
Description

0
Show [OK] button

1
Show [OK] and [Cancel] buttons

2
Show [Abort], [Retry] and [Ignore] buttons

3
Show [Yes], [No] and [Cancel] buttons

4
Show [Yes] and [No] buttons

5
Show [Retry] and [Cancel] buttons

Icon Types

PRIVATE
Value
Description

16
Show "Stop Mark" icon

32
Show "Question Mark" icon

48
Show "Exclamation Mark" icon

64
Show "Information Mark" icon

The preceding two tables do not cover all values for natType. For a complete list, see the Win32 documentation.

The return value intButton denotes the number of the button that the user clicked. If the user does not click a button before natSecondsToWait seconds, intButton is set to -1.

PRIVATE
Value
Description

1
[OK] button

2
[Cancel] button

3
[Abort] button

4
[Retry] button

5
[Ignore] button

6
[Yes] button

7
[No] button

Example

Set WshShell = Wscript.CreateObject("Wscript.Shell") WshShell.Popup "Where do you want to go today?"

See Also

Wscript.Echo method

WshShell.RegDelete
The RegDelete method deletes from the registry the key or value named strName.

Syntax

WshShell.RegDelete strName

Parameters

strName

If strName ends with a backslash character (\), this method deletes the key instead of the value. The strName parameter must begin with one of following root key names:

PRIVATE
Short
Long

HKCU
HKEY_CURRENT_USER

HKLM
HKEY_LOCAL_MACHINE

HKCR
HKEY_CLASSES_ROOT

HKEY_USERS

HKEY_CURRENT_CONFIG

Example

Set WshShell = Wscript.CreateObject("Wscript.Shell")
WshShell.RegDelete "HKCU\ScriptEngine\Value" ' Delete value "Value"
WshShell.RegDelete "HKCU\ScriptEngine\Key\" ' Delete key "Key"

See Also

WshShell.RegRead method, WshShell.RegWrite method

WshShell.RegRead
The RegRead method returns the registry key or value named by strName.

Syntax

WshShell.RegRead(strName) = strValue

Parameters

strName

If strName ends with the backslash character (\), this method returns the key instead of the value. StrName must begin with one of following root key names:

PRIVATE
Short
Long

HKCU
HKEY_CURRENT_USER

HKLM
HKEY_LOCAL_MACHINE

HKCR
HKEY_CLASSES_ROOT

HKEY_USERS

HKEY_CURRENT_CONFIG

Remarks
The RegRead method supports only REG_SZ, REG_EXPAND_SZ, REG_DWORD, REG_BINARY, and REG_MULTI_SZ data types. If the registry has other data types, RegRead returns DISP_E_TYPEMISMATCH.

Example

Set WshShell = Wscript.CreateObject("Wscript.Shell")
WshShell.RegRead("HKCU\ScriptEngine\Val") ' Read from value "Val"
WshShell.RegRead("HKCU\ScriptEngine\Key\") ' Read from key "Key"

See Also

WshShell.RegDelete method, WshShell.RegWrite method

WshShell.RegWrite
The RegWrite method sets the registry key or value named by strName.

Syntax

WshShell.RegWrite strName, anyValue, [strType]

Parameters

strName

If strName ends with a backslash character (\), this method sets the key instead of the value. StrName must begin with one of following root key names:

PRIVATE
Short
Long

HKCU
HKEY_CURRENT_USER

HKLM
HKEY_LOCAL_MACHINE

HKCR
HKEY_CLASSES_ROOT

HKEY_USERS

HKEY_CURRENT_CONFIG

Remarks
RegWrite supports strType as REG_SZ, REG_EXPAND_SZ, REG_DWORD and REG_BINARY. If another data type is passed as strType, RegWrite returns E_INVALIDARG.

RegWrite automatically converts anyValue to a string when strType is REG_SZ or REG_EXPAND_SZ. If strType is REG_DWORD, anyValue is converted to an integer. If strType is REG_BINARY, anyValue must be an integer.

Example

Set WshShell = Wscript.CreateObject("Wscript.Shell")
WshShell.RegWrite "HKCU\ScriptEngine\Value", "Some string value"
WshShell.RegWrite "HKCU\ScriptEngine\Key\", 1 "REG_DWORD"

See Also

WshShell.RegDelete method, WshShell.RegWrite method

WshShell.Run
The Run method creates a new process that executes strCommand with window style intWindowStyle.

Syntax

WshShell.Run (strCommand, [intWindowStype], [bWaitOnReturn])

Parameters

strCommand

Environment variables within the strCommand parameter are automatically expanded.

bWaitOnReturn

If bWaitOnReturn is not specified or FALSE, this method immediately returns to script execution rather than waiting on the process termination.

If bWaitOnReturn is set to TRUE, the Run method returns any error code returned by the application.

If bWaitOnReturn is not specified or is FALSE, Run returns an error code of 0 (zero).

Example

' This fragment launches Notepad with the current executed script
Set WshShell = Wscript.CreateObject("Wscript.Shell")
WshShell.Run ("notepad " & Wscript.ScriptFullName)
WshShell.Run ("%windir%\notepad" & Wscript.ScriptFullName)

' This fragment returns the error code from the executed application
Return = WshShell.Run("notepad " & Wscript.ScriptFullName, 1, TRUE)

WshNetwork Object

PRIVATE
ProgID
Wscript.WshNetwork

Filename
WSHom.Ocx

CLSID
F935DC26-1CF0-11d0-ADB9-00C04FD58A0B

IID
F935DC25-1CF0-11d0-ADB9-00C04FD58A0B

The following table describes the properties associated with the WshNetwork object.

PRIVATE
Property
Description

ComputerName
A string representation of the computer name.

UserDomain
A string representation of the user's domain name.

UserName
A string representation of the user's name.

The following table describes the methods associated with the WshNetwork object.

PRIVATE
Method
Description

AddPrinterConnection
Maps a remote printer to a local resource name.

EnumNetworkDrives
Returns the current network drive mappings.

EnumPrinterConnections
Returns the current network drive mappings.

MapNetworkDrive
Maps a share point to a local resource name.

RemoveNetworkDrive
Removes the current resource connection.

RemovePrinterConnection
Removes a current resource connection.

SetDefaultPrinter
Sets the default printer.

WshNetwork.ComputerName
The ComputerName property provides a string representation of the computer name.

Syntax

WshNetwork.ComputerName = strComputerName

WshNetwork.UserDomain
The UserDomain property provides a string representation of the user domain name.

Syntax

WshNetwork.UserDomain = strDomain

WshNetwork.UserName
The UserName property provides a string representation of the user name.

Syntax

WshNetwork.UserName = strName

WshNetwork.AddPrinterConnection
The AddPrinterConnection method maps the remote printer specified by strRemoteName to the local resource name strLocalName.

Syntax

WshNetwork.AddPrinterConnection strLocalName, strRemoteName, [bUpdateProfile], [strUser], [strPassword]

Parameters

strLocalName

Local resource to map to.

strRemoteName Remote printer to map.

bUpdateProfile

If bUpdateProfile is supplied and its value is TRUE, this mapping is stored in the user profile. strUser, strPassword.

If you are mapping a remote printer using the credentials of someone other than current user, you can specify strUser and strPassword.

Example

Set WshNetwork = Wscript.CreateObject("Wscript.Network")
WshNetwork.AddPrinterConnection "LPT1", "\\Server\Print1"

WshNetwork.EnumNetworkDrives
The EnumNetworkDrives method returns the current network drive mappings as a WshCollection object. Items in this collection are local names and remote names.

Syntax

WshNetwork.EnumNetworkDrive = objWshCollection

Example

Set WshNetwork = Wscript.CreateObject("Wscript.Network")
Set oDrives = WshNetwork.EnumNetworkDrives
Wscript.Echo oDrives.Item(0) = "Z:"
Wscript.Echo oDrives.Item(1) = "\\Server\Share"

See Also WshNetwork.MapNetworkDrive method, WshNetwork.RemoveNetworkDrive method, WshCollection object

WshNetwork.EnumPrinterConnections
The EnumPrinterConnections method returns the current network drive mappings as a WshCollection object. Items in this collection are local names and remote names.

Syntax

WshNetwork.EnumPrinterConnections = objWshCollection

Example

Set WshNetwork = Wscript.CreateObject("Wscript.Network")
Set oPrinters = WshNetwork.EnumPrinterConnections
Wscript.Echo oPrinters.Item(0) = "LPT1:"
Wscript.Echo oPrinters.Item(1) \\Server\Printer1"

See Also

WshNetwork.AddPrinterConnection method, WshNetwork.RemovePrinterConnection method, WshCollection object.

WshNetwork.MapNetworkDrive
The MapNetworkDrive method maps the share point specified by strRemoteName to the local resource name strLocalName.

Syntax

WshNetwork.MapNetworkDrive strLocalName, strRemoteName, [bUpdateProfile], [strUser], [strPassword]

Parameters

strLocalName

Local resource name to map to.

strRemoteName

Remote share to map.

bUpdateProfile

If bUpdateProfile is supplied and its value is TRUE, this mapping is stored in the user profile.

strUser, strPassword

If you are mapping the share point using the credentials of someone other than current user, you can specify strUser and strPassword.

Example Set WshNetwork = Wscript.CreateObject("Wscript.Network")
WshNetwork.MapNetworkDrive "Z:", "\\Server\Share"
WshNetwork.RemoveNetworkDrive
The RemoveNetworkDrive method removes the current resource connection denoted by strName.

Syntax

WshNetwork.RemoveNetworkDrive strName, [bForce], [bUpdateProfile]

Parameters

strName

The strName parameter can be either a local name or a remote name, depending on how the drive is mapped. If the drive has a mapping between a local name (drive letter) and a remote name, then strName must be set to the local name. If the network path does not have a local name (drive letter) mapping, then strName must be set to the remote name.

bForce

If bForce is supplied and its value is TRUE, this method removes the connections whether the resource is used or not.

bUpdateProfile

If bUpdateProfile is supplied and its value is TRUE, this mapping is stored in the user profile.

Example

Set WshNetwork = Wscript.CreateObject("Wscript.Network")
' Local name mapped to remote share
WshNetwork.MapNetworkDrive "Z:", "\\Server\Share"
WshNetwork.RemoveNetworkDrive "Z:"
' No local name mapping, such as:
' NET USE \\Server\ShareWshNetwork.RemoveNetworkDrive "\\Server\Share"
WshNetwork.MapNetworkDrive "\\Server\Share"
WshNetwork.RemoveNetworkDrive "\\Server\Share"
WshNetwork.RemovePrinterConnection
The RemovePrinterConnection method removes the current resource connection denoted by strName.

Syntax

WshNetwork.RemovePrinterConnection strName, [bForce], [bUpdateProfile]

Parameters

strName

The strName parameter can be either a local name or a remote name, depending on how the printer is connected. If the printer has a mapping between a local name (for examle, LPT1) and a remote name, then strName must be set to the local name. If the network path does not have a local name mapping, then strName must be set to the remote name.

bForce

If bForce is supplied and its value is TRUE, this method removes the connection whether the resource is used or not.

bUpdateProfile

If bUpdateProfile is supplied and its value is TRUE, this mapping is stored in the user profile.

Example

Set WshNetwork = Wscript.CreateObject("Wscript.Network")
' Local name mapped to remote share
WshNetwork.RemovePrinterConnection "LPT1:"
' No local name mapping. e.g. NET USE "\\Server\Printer1"
WshNetwork.RemovePrinterConnection "\\Server\Printer1"
WshNetwork.SetDefaultPrinter
The SetDefaultPrinter method sets default print to the remote printer specified by strPrinterName.

Syntax

WshNetwork.SetDefaultPrinter strPrinterName

Parameters

strPrinterName

Remote printer name to set as default, such as "\\Server\Printer1". Note that strPrinterName cannot be a local name such as "LPT1:".

WshCollection Object
The WshCollection object is not exposed directly. For access to it, use WshNetwork.EnumNetworkDrives or WshNetwork.EnumPrinterConnections.

PRIVATE
ProgID
N/A

Filename
WSHom.Ocx

CLSID
F935DC24-1CF0-11d0-ADB9-00C04FD58A0B

IID
F935DC23-1CF0-11d0-ADB9-00C04FD58A0B

The following table describes the properties associated with the WshCollection object.

PRIVATE
Property
Description

Item
Provides the nth enumerated item as a string.

Count
The number of enumerated items.

length
The number of enumerated items (JScript).

WshCollection.Item
The Item property provides the natIndexth enumerated item as a string. It is the default property.

Syntax

WshCollection(natIndex) = strEnumeratedItem
WshCollection.Item(natIndex) = strEnumeratedItem

Example

Set WshNetwork = Wscript.CreateObject("Wscript.Network")
Set oDrives = WshNetwork.EnumNetworkDrives
Wscript.Echo oDrives.Item(0) = " "Z:"
Wscript.Echo oDrives.Item(1) = "\\Server\Share"

WshCollection.Count
The Count property provides the number of enumerated items.

Syntax

WshCollection.Count = natNumberOfItemsl

See Also

WshCollection.length property

WshCollection.length
The length property provides the number of enumerated items. This property provides the same functionality as the Count property and is provided for compatibility with JScript.

Syntax

WshCollection.length = natNumberOfItems

See Also

WshCollection.Count property

WshEnvironment Object
The WshEnvironment object is not exposed directly. For access to it, use the WshShell.Environment property.

PRIVATE
ProgID
N/A

Filename
WSHom.Ocx

CLSID

IID

The following table describes the properties associated with the WshEnvironment object.

PRIVATE
Property
Description

Item
Gets or sets the value of a specified environment variable.

Count
The number of enumerated items.

length
The number of enumerated items (JScript).

The following table describes the method associated with the WshEnvironment object.

PRIVATE
Method
Description

Remove
Deletes a specified environment variable.

WshEnvironment.Item
The Item property sets or returns the value for the strName environment variable. It is the default property.

Syntax

WshEnvironment.Item("strName") = strValue
WshEnvironment("strName") = strValue

Example

' Get the value of NUMBER_OF_PROCESSORS environment variable
Set WshShell = Wscript.CreateObject("Wscript.Shell")
Set WshSysEnv = WshShell.Environment("SYSTEM")
Wscript.Echo WshSysEnv("NUMBER_OF_PROCESSORS")

' Set the value of EXAMPLE volatile environment variable to A_VALUE
Set WshShell = Wscript.CreateObject("Wscript.Shell")
Set WshEnv = WshShell.Environment("VOLATILE")
WshEnv("EXAMPLE")= "A_VALUE"

' List all system environment variables
Set WshShell = Wscript.CreateObject("Wscript.Shell")
For Each strVarName In WshShell.Environment("SYSTEM")
MsgBox strVarName
Next

See Also

WshShell.Environment property

WshEnvironment.Count
The Count property provides the number of enumerated items.

Syntax

WshEnvironment.Count = natNumberOfItems

See Also

WshEnvironment.length property

WshEnvironment.length
The length property provides the number of enumerated items. This property provides the same functionality as the Count property and is provided for compatibility with JScript.

Syntax

WshEnvironment.length = natNumberOfItems

See Also

WshEnvironment.Count property

WshEnvironment.Remove
The Remove method deletes the environment variable specified by strName.

Syntax

WshEnvironment.Remove(strName)

Example

' Delete the EXAMPLE volatile environment variable
Set WshShell = Wscript.CreateObject("Wscript.Shell")
WshShell.Environment("VOLATILE").Remove("EXAMPLE")

' Delete multiple variables
Set WshUsrEnv = Wscript.Environment("User")
WshUsrEnv.Remove("EXAMPLE_1")
WshUsrEnv.Remove("EXAMPLE_2")
WshUsrEnv.Remove("EXAMPLE_3")
WshUsrEnv.Remove("EXAMPLE_4")

See Also

WshShell.Environment property

WshShortcut Object This object is not exposed directly. To get the WshShortcut object, use the WshShell.CreateShortcut method.

PRIVATE
ProgID
N/A

Filename
WSHom.Ocx

CLSID
F935DC28-1CF0-11d0-ADB9-00C04FD58A0B

IID
F935DC27-1CF0-11d0-ADB9-00C04FD58A0B

The following table describes the properties associated with the WshShortcut object.

PRIVATE
Property
Description

Arguments
Parameters to a shortcut object.

Description
A description of a shortcut object.

Hotkey
The hotkey of a shortcut object.

IconLocation
The icon location of a shortcut object.

TargetPath
The target path of a shortcut object.

WindowStyle
The window style of a shortcut object.

WorkingDirectory
The working directory of a shortcut object.

The following table describes the method associated with the WshShortcut object.

PRIVATE
Method
Description

Save
Saves a shortcut into a specified file system.

WshShortcut.Arguments
The Arguments property provides parameters to a shortcut object.

Syntax

WshShortcut.Arguments = strArguments

WshShortcut.Description
The Description property provides a description of a shortcut object.

Syntax

WshShortcut.Description = strDescription

WshShortcut.FullName
The FullName property provides the full path of a shortcut object.

Syntax

WshShortcut.FullName = strFullName

WshShortcut.Hotkey
The HotKey property provides the hotkey of a shortcut object. A hotkey is a keyboard shortcut to start or switch to a program.

Syntax

WshShortcut.HotKey = strHotKey

Remarks
BNF syntax of strHotKey is as follows:

Hotkey ::= modifier* keyname
modifier ::= "ALT+" | "CTRL+" | "SHIFT+" | "EXT+"
keyname ::= "A" .. "Z" |
 "0".. "9" |
 "Back" | "Tab" | "Clear" | "Return" |
 "Escape" | "Space" | "Prior" | ...

Complete key names are found in WINUSER.H. Hotkey is case-insensitive.

Hotkeys can only activate shortcuts located on the Windows-based desktop or the Windows Start menu. The Windows Explorer does not accept ESC, ENTER, TAB, SPACE, PRINT SCREEN or BACKSPACE, even though WshShortcut.Hotkey supports these in compliance with the Win32 API. It is therefore recommended that you not use these keys in your shortcut.

Example

Set WshShell = Wscript.CreateObject("Wscript.WshShell")
strDesktop = WshShell.SpecialFolders("Desktop")
Set oMyShortcut = WshShell.CreateShortcut(strDesktop & "\a_key.lnk")
OMyShortcut.TargetPath = "%windir%\notepad.exe"
oMyShortCut.Hotkey = "ALT+CTRL+F"
oMyShortCut.Save
Wscript.Echo oMyShortCut.HotKey = "Alt+Ctrl+F"

See Also

WshSpecialFolders object

WshShortcut.IconLocation
The IconLocation property provides the icon location of a shortcut object. The format of the icon location should be "Path,index".

Syntax

WshShortcut.IconLocation = strIconLocation

WshShortcut.TargetPath
The TargetPath property provides the target path of a shortcut object.

Syntax

WshShortcut.TargetPath = strTargetPath

WshShortcut.WindowStyle
The WindowStyle property provides the window style of a shortcut object.

Syntax

WshShortcut.WindowStyle = natWindowStyle

WshShortcut.WorkingDirectory
The WorkingDirectory property provides the working directory of a shortcut object.

Syntax

WshShortcut.WorkingDirectory = strWorkingDirectory

WshShortcut.Save
The Save method saves the shortcut object to the location specified by the FullName property.

Syntax

WshShortcut.Save

WshSpecialFolders Object
This object is not exposed directly. To get the WshSpecialFolders object, use the WshShell.SpecialFolders property.

PRIVATE
ProgID
N/A

Filename
WSHom.Ocx

CLSID

IID

The following table describes the properties associated with the WshSpecialFolders object.

PRIVATE
Property
Description

Item
The full path of the specified special folder (default)

Count
The number of enumerated items.

length
The number of enumerated items (JScript).

WshSpecialFolders.Item
The Item property returns the full path for the special folder specified by strFolderName. It is the default property.

Syntax

WshShell.SpecialFolders.Item("strFolderName") = strFolderPath
WshShell.SpecialFolders("strFolderName") = strFolderPath

Remarks
WshShell.SpecialFolders("strFolderName") returns NULL if the requested folder (strFolderName) is not available. For example, Windows 95 does not have an AllUsersDesktop folder and returns NULL if strFolderName = AllUsersDesktop

The following special folders are provided with the Windows 95 and Windows NT 4.0 operating systems:

AllUsersDesktop
AllUsersStartMenu
AllUsersPrograms
AllUsersStartup
Desktop
Favorites
Fonts
MyDocuments
NetHood
PrintHood
Programs
Recent
SendTo
StartMenu
StartupB
Templates

Example

' This fragment returns the full path for the Windows Desktop folder
Set WshShell = Wscript.CreateObject("Wscript.Shell")
StrMyDesktop = WshShell.SpecialFolders("Desktop")

' List all special folders
For Each strFolder In WshShell.SpecialFolders
MsgBox strFolder
Next

See Also

WshShell.SpecialFolders property

WshSpecialFolders.Count
The Count property provides the number of enumerated items.

Syntax

WshSpecialFolders.Count = natNumberOfItems

See Also

WshSpecialFolders.length property

WshSpecialFolders.length
The length property provides the number of enumerated items. This property provides the same functionality as the Count property and is provided for compatibility with Microsoft JScript.

Syntax

WshSpecialFolders.length = natNumberOfItems

See Also

WshSpecialFolders.Count property

WshUrlShortcut Object
This object is not exposed directly. To get the WshUrlShortcut object, use the WshShell.CreateShortcut method.

PRIVATE
ProgID
N/A

Filename
WSHom.Ocx

CLSID

IID

The following table describes the properties associated with the WshUrlShortcut object.

PRIVATE
Property
Description

FullName
The full path of a URL shortcut object.

TargetPath
The target path of a URL shortcut object.

The following table describes the method associated with the WshUrlShortcut object.

PRIVATE
Property
Description

Save
Saves a shortcut into a specified file system.

WshUrlShortcut.FullName
The FullName property provides the full path of a shortcut object.

Syntax

WshUrlShortcut.FullName = strFullName

WshUrlShortcut.TargetPath
The TargetPath property provides the target path of a shortcut object.

Syntax

WshUrlShortcut.TargetPath = strTargetPath

WshUrlShortcut.Save
The Save method saves a shortcut to the location specified by the FullName property.

Syntax

WshUrlShortcut.Save

FOR MORE INFORMATION

For the latest information on Windows NT Server, check out our World Wide Web site at http://www.microsoft.com/ntserver or the Windows NT Server Forum on the Microsoft Network (GO WORD: MSNTS).

<!-- end content -->
